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We introduce the concept of perfect space–time vortices
(PSTVs) that can exist in media with anomalous dispersion.
If the topological charge of a PSTV is not too large, the spa-
tiotemporal intensity distribution of the vortex field does not
depend on the magnitude of the topological charge. We show
theoretically how a PSTV can be realized in the optical con-
text through spatiotemporal focusing of a Bessel–Gaussian
space–time optical vortex source that is placed in the focal
plane of a space–time lens composed of an ordinary lens
and a time lens with matched spatial and temporal focal
lengths. © 2024 Optica Publishing Group. All rights, including for
text and data mining (TDM), Artificial Intelligence (AI) training, and
similar technologies, are reserved.
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Optical vortices (OVs) are structured light fields with heli-
coidal wavefronts surrounding the lines of zero intensity [1,2].
The correlation functions of random optical fields can also be
endowed with vortices [3,4]. Since the seminal discovery of a
connection between an optical vortex and the orbital angular
momentum (OAM) of light [5], many intriguing fundamental
aspects of OVs and OAM have been unveiled and numerous
applications emerged of OVs to optical communications [6,7],
optical trapping and tweezing [8,9], imaging [10], and even
optical computing [11].

A garden variety OV exhibits a characteristic intensity null
on its axis which is surrounded by a bright ring with the radius
scaling with the magnitude of its OAM [6,12]. This state of
affairs is troublesome for some applications. For instance, optical
communication protocols greatly benefit from multiplexing as
many spatially overlapping OAM states as possible [13]. By
the same token, it is often desirable that the size of a trapping
vortex beam be independent of its OAM content [14]. The so-
called perfect vortex beams were introduced [15] and actively
explored [16,17] to accommodate such situations. The intensity
profile of a realistic perfect vortex forms a thin ring of a radius
nearly independent of the topological charge of the vortex [18].

In addition to OVs carrying longitudinal OAM, which have
been extensively studied to date, spatiotemporal optical vortices
(STOVs), supported by dispersive optical media and endowed
with transverse OAM, have recently piqued researchers’ curios-
ity [19]. The spatiotemporal vortices have been theoretically
suggested [20] and experimentally realized [21,22], and several
classes of STOVs, including dispersionless [23] and dispersive
[24] Bessel and Laguerre–Gaussian ones [25], were examined

in detail. As STOVs rely on tight coupling between spatial and
temporal degrees of freedom of optical fields, they present fun-
damental interest. In this connection, a question arises: Is it
possible to generate a perfect space–time optical vortex in a
dispersive medium?

In this Letter, we introduce the concept of perfect space–time
vortices (PSTVs). The spatiotemporal field distribution of any
PSTV is independent of its OAM content. We show that in
the optical context, a PSTV can be generated upon focusing
a Bessel–Gauss space–time vortex source with a sequence of
an ordinary lens and a time lens with matched spatial and
temporal focal lengths. We also compare and contrast the
energy density flux of Bessel–Gauss and perfect space–time
vortex fields. We anticipate the discovered PSTVs to find appli-
cations to dynamic trapping and tweezing neutral particles
along controllable space–time trajectories as well as to optical
communications with pulsed light fields.

The evolution of the electric field E in a linear isotropic,
weakly dispersive medium is governed, in the space–frequency
domain, by the Helmholtz wave equation of the form

∇′2E + β2(ω′)E = 0. (1)

Here β(ω′) is a propagation constant of a plane wave of fre-
quency ω′ in the medium. Hereafter, all primed variables are
dimensional. Assuming a linearly polarized electric field, we
can write the field in terms of its slowly varying space–time
envelope Ψ as

E(x′, t′, z′) = eyΨ(x′, t′, z′)ei(β0z′−ω′
0 t′), (2)

where ω′
0 is a carrier frequency, β0 = β(ω

′
0), and ey is a unit

vector in the y-direction. We can then express Ψ in terms of its
angular spectrum as follows:

Ψ(x′, t′, z′) =
∫

dk′

x

∫
dΩ′ A(k′

x,Ω′)eiqzz′eik′xx′e−iΩ′t′ . (3)

Here qz = k′
z − β0, Ω′ = ω′ − ω′

0 and A(k′
x,Ω′) = ˜︁Ψ(x′, t′, 0),

tilde denoting a Fourier transform, is a (complex) spectral ampli-
tude of the field. Further, the wave vector of each plane wave of
the angular spectrum satisfies the dispersion relation as

k′2
z + k′2

x = β
2(Ω′), (4)

where we assumed that the field is collimated in the y-direction
(light sheet), which is typically required to ensure tight space-
time coupling among the (k′

x,Ω′) pairs of the angular spectrum
[26].

0146-9592/24/154322-04 Journal © 2024 Optica Publishing Group

https://orcid.org/0009-0005-0190-8015
https://doi.org/10.1364/OL.529611


Letter Vol. 49, No. 15 / 1 August 2024 / Optics Letters 4323

Next, weak dispersion implies negligible absorption. We can
then expand the propagation constant as

β(Ω′) ≃ β0 + β1Ω
′ + β2Ω

′2/2. (5)

Here β1 and β2 describe the (inverse) group velocity at fre-
quency ω′

0 and group velocity dispersion, respectively, while
the paraxiality of the envelope, together with Eq. (5), allows us
to transform Eq. (4) to

qz ≃ β1Ω
′ + β2Ω

′2/2 − k′2
x /(2β0). (6)

On substituting from Eqs. (5) and (6) into Eq. (3), we can cast
the angular spectrum representation for Ψ into the form

Ψ(x′, t′, z′) =
∫

dk′

x

∫
dΩ′ A(k′

x,Ω′)ei(k′xx′−Ω′τ′)

× eiz′(β2Ω
′2−k′2x /β0)/2,

(7)

where we introduced a retarded time by the expression τ′ =
t′ − β1z′.

At this stage, it is convenient to transform to dimensionless
variables by scaling the coordinates (x′, τ′) and (k′

x,Ω′) in phys-
ical and reciprocal spaces, respectively, to characteristic scales
σx and σt as x = x′/σx and τ = τ′/σt as well as K = k′

xσx and
Ω = Ω′σt. Further, introducing characteristic diffraction and dis-
persion lengths by Lx = 2β0σ

2
x and Lt = 2σ2

t /|β2 |, we can scale
the longitudinal coordinate as z = z′/Ld where Ld =

√
LxLt. The

field envelope in dimensionless coordinates then reads

Ψ(x, t, z) =
∫

dK
∫

dΩA(K,Ω)ei(Kx−Ωτ)eiz(asΩ2−K2/a). (8)

Here s = sgn(β2) and a =
√︁

Lx/Lt is a stretching factor quanti-
fying the relative strength of diffraction and dispersion. We can
infer at once from Eq. (8) that the physics of any envelope evo-
lution is completely determined by its spectral amplitude, the
type of medium dispersion—normal versus anomalous—and
the stretching factor.

Further, the angular spectrum representation [Eq. (8)] can be
shown to be equivalent to a paraxial wave equation for the field
envelope in the form

ia∂zΨ + ∂
2
xxΨ − sa2∂2

ττΨ = 0. (9)

Following Ref. [27] and introducing the amplitude and phase
of Ψ, such that Ψ = |Ψ|eiΦ, we can readily derive a continuity
equation for the energy density |Ψ|2 as

∂z |Ψ|
2 + ∇ · J = 0, (10)

where the energy density flux reads

J = (2a−1ex∂xΦ − 2aseτ∂τΦ)|Ψ|
2. (11)

The circulation of J around a vortex core is a fundamental
signature of any space–time optical vortex.

Let us now focus on the anomalous dispersion case, s = −1. It
will prove convenient to transform to stretched polar coordinates
that we define as

K = a1/2κ cos θ, Ω = a−1/2κ sin θ, (12a)

x = a−1/2r cos ϕ, τ = a1/2r sin ϕ. (12b)

It follows at once from Eq. (12) that

κ =
√︁

K2/a + aΩ2, θ = arctan[aΩ/K], (13a)

r =
√︁

ax2 + τ2/a, ϕ = arctan[τ/(ax)]. (13b)

Next, consider the angular spectrum constrained to an ellipse
in the k-space such that

AB(κ, θ) ∝ δ(κ − 1)e−ilθ . (14)

Henceforth, we drop any immaterial normalization constant.
It follows at once from Eqs. (8) and (14), upon some algebra
spelled out in Supplement 1, that

ΨB(r, ϕ, z) ∝ Jl(r)eilφ , (15)

which describes an ideal propagation-invariant space–time
Bessel vortex previously studied in [24]. Unfortunately, just like
its infinite-power spatial counterpart [28,29], such a field carries
infinite energy and hence cannot be realized in the laboratory.
A finite-energy realization of such a space–time vortex can be
obtained by utilizing the spectral amplitude:

ABG(κ, θ) ∝ Il(2pκ)e−κ2 e−ilθ , (16)

where p is a real parameter and Il(x) is a modified Bessel function
of the first kind and order l. We sketch |ABG(κ, θ)| as a function
of κ in Fig. 1. We can infer from the figure that for p ≫ 1,
the angular spectrum is virtually independent of l and sharply
peaks around κmax ≃ p. Notice, though, that the angular spectrum
peak slightly shifts away from κmax for sufficiently large l, and
this trend is mitigated by employing greater p as is seen in
the bottom panel of the figure. We also exhibit an approximate
expression for the angular spectrum obtained with the aid of an
asymptotic expression for the modified Bessel function for large
arguments—see Supplement 1 for details–with a solid blue line
in the top and middle panels of the figure.

On substituting from Eq. (16) into Eq. (8), we obtain, after
straightforward manipulations detailed in Supplement 1, for the

Fig. 1. Top and middle rows: absolute value of the spectral ampli-
tude of an STBG vortex of variables l and p. Bottom row: the position
of the peak of the angular spectrum amplitude versus l for variable
p. Solid blue line: asymptotic expression for the absolute value of
the spectral amplitude.
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field envelope the following expression:

ΨBG(r, ϕ, z) ∝
eilφ

(1 + iz)
exp

(︃
p2 − r2/4

1 + iz

)︃
Jl

(︃
pr

1 + iz

)︃
. (17)

Equation (17) defines a space–time Bessel–Gauss (STBG) beam
carrying an elliptic vortex of topological charge l.

We display the evolution of intensity, phase, and energy den-
sity flux of an STBG vortex as functions of z in Fig. 2. The most
remarkable feature manifest from Fig. 2 is vanishing of the vortex
on the propagation of the STBG beam. Indeed, we can observe
by comparing the panels in the top and third from the top rows of
the figure that the energy flow, which circulates around the vortex
core at the source, gradually changes its direction, transforming
into a purely radial flux at z = 0.4. Hence, we can conclude that,
in general, the STBG field loses its vortex structure at a certain
distance on propagation in a linear dispersive medium.

Fig. 2. Evolution of the intensity, phase, and energy density flow
(depicted by arrows over the intensity profiles) of STBG vortices
with l = 2, p = 5, and variable a.

We now show how a perfect space–time vortex can be gen-
erated from an STBG beam if we rely on focusing instead of
diffraction. To this end, we introduce the concept of a space–time
lens. We assume the source field is transmitted through a time
lens imposing a linear temporal chirp C onto the field, fol-
lowed by an ordinary lens of focal length f . In practice, the
time lens is typically realized [30] by having an optical probe
and microwave control fields co-propagate over a short distance
inside a waveguide. The microwave field then imparts a quadratic
temporal phase to the optical one via a linear [31] or quadratic
[32] electro-optical effect.

We now treat space–time focusing quantitatively inspired by
the standard textbook approach to spatial lensing [33]. We can
infer from Eq. (8) that the complex amplitudes of Ψ in any
transverse plane z = const ≥ 0 and at the source are related via
a (stretched) space–time Fresnel transform as

Ψ(x, τ, z) =
(︃

1
4πiz

)︃ ∫
dξ

∫
dζ Ψ(ξ, ζ , 0)

× exp
[︃

i
4z

(︁
a(x − ξ)2 + (τ − ζ)2/a

)︁ ]︃
.

(18)

Let us assume that the source is located right behind a thin
ordinary lens of focal length f and the time lens so that

Ψ
+
l (x, τ, 0) = Ψ−

l (x, τ, 0)e−iLxx2/(4f )e−iCτ2 . (19)

Here the field right in front of (behind) the space–time lens is
denoted with the superscript + (−); we employ the subscript “l”
to stress that the field envelope is evaluated right in the transverse
plane of the lens. Assuming the source plane coincides with the
plane of the lens and substituting from Eq. (19) into Eq. (18),
we obtain, after some rearrangement, for the field envelope in
the image plane z = z0 the expression

Ψ(x, τ, z0) =
exp

[︂
i

4z0
(ax2 + τ2/a)

]︂
4πiz0

∫
dξ

∫
dζ Ψ−

l (ξ, ζ)e
−

iaxξ
2z0

× exp
(︃
−

iτζ
2az0

)︃
exp

[︃
−iξ2

(︃
Lx

4f
−

a
4z0

)︃
− iζ 2

(︃
C −

1
4az0

)︃]︃
.

(20)
We can infer from Eq. (20) that the quadratic exponential term
inside the integral on the right-hand side vanishes provided that

Lx = af /z0, 4az0C = 1. (21)

It follows from Eq. (21) that the image plane has to be located
in the front focal plane of the lens

z0 = f /Ld =⇒ z′0 = f , (22)

and
Lt = 4fC. (23)

Equation (23) gives a matching condition between the temporal
chirp and spatial focal length of the space–time lens to ensure
the lens performs a space–time Fourier transform of the field in
its focal plane.

Next, we can eliminate the quadratic phase factor in front of
the integral in Eq. (20) by adjusting the source position behind
the lens. Assuming the conditions [Eqs. (22) and (23)] are met,
we can cast Eq. (20) into the form

Ψ(x, τ, f /Ld) ∝ exp
[︃
iLd

4f
(ax2 + τ2/a)

]︃ ˜︁Ψl

(︃
axLd

2f
,
τLd

2af

)︃
. (24)

If the source is situated a distance D behind the lens, it follows
from Eq. (8) that the Fourier transforms of the fields at the source
and on the lens are related as˜︁Ψl(K,Ω) = ˜︁Ψs(K,Ω)e−iD(aΩ2+K2/a), (25)

where the subscript s pertains to the source. On substituting from
Eq. (25) into Eq. (24), we can show, after elementary algebra,
that the quadratic phase factor in Eq. (24) disappears if the source
is placed in the back focal plane of the lens:

D = f /Ld =⇒ D′ = f . (26)

The matched space–time lens then realizes a scaled Fourier
transform of the source in its front focal plane:

Ψf (x, τ) ∝
∫

dξ
∫

dζ Ψs(ξ, ζ)ei
(︂ Ld

2f

)︂
(axξ+τζ/a), (27)

where the subscript f refers to the focal plane image.
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On substituting from Eq. (17) into Eq. (27) with the source
field evaluated at z = 0, we derive, after some algebra outlined
in Supplement 1, for the PSTV field envelope the expression

ΨPSTV(x, τ) ∝ eilφe−r2/δ2 Il(2r0r/δ2), (28)

where δ = 2f /Ld is the thickness of the ring and r0 = pδ =
2pf /Ld is proportional to the longest (shortest) radius of the
vortex ellipse. In the limit p ≫ 1 (δ ≪ r0), Eq. (28) can be cast
into the form (see Supplement 1 for details)

ΨPSTV(x, τ) ∝ eilφe−(r−r0)
2/δ2 . (29)

Equations (28) and (29) describe the field of a genuine perfect
space–time vortex, cf. [17,18]. We illustrate in Fig. S1 in Supple-
ment 1 that the PSTV profile is indeed independent of its OAM
content for reasonable values of the topological charge. Such
a PSTV has a highly localized peak intensity, and its param-
eters are easily adjustable by varying the focal length f and
chirp C. Notice, however, that for large or small enough a, the
shortest ellipse radius can be comparable to its thickness, which
distinguishes PSTVs from their circular spatial cousins.

In Fig. 3, we show the intensity, phase, and energy flow of
a PSTV with l = 2 and variable a, situated in the focal plane
of a space–time lens. We can see from the figure that while the
aspect ratio of the vortex ring is governed by the magnitude of a,
the vortex ring thickness is determined by the angular spectrum
parameter p of the Bessel–Gauss source. At the same time, the
energy circulates around the dark vortex core, underscoring the
genuine vortex structure of the field.

Fig. 3. Intensity (top and third from the top rows) and phase
(second from the top and bottom rows) profiles of PSTVs with
l = 2 and variable p and a in the focal plane of a space–time lens.
The energy flow is indicated by the arrows.

In summary, we introduced the concept of a perfect
space–time vortex. We have demonstrated that the perfect
space–time vortices can be produced by focusing space–time
Bessel–Gauss beams with a space–time lens with matching

spatial and temporal focal lengths. We expect the discovered
space–time vortices to facilitate neutral particle trapping and
tweezing along prescribed trajectories in space and time.
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